Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Neurosci ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548336

RESUMEN

Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typical developing (TD) individuals that may be used for the prediction of individual responses to tDCS. 57 TD male and female children received 2mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporo-parietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, Flanker, Mooney Faces Detection, Attentional Emotional Recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3-Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using a general linear model. Machine learning (ML) algorithms were employed to predict responses to tDCS. Overall, vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioural variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioural measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.Significance statement Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that has recently gained more attention in neurodevelopmental disorders (NDDs), such as autism and attention-deficit/hyperactivity disorder. However, due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical biomarkers in typical developing individuals that may be used for the prediction of individual responses to tDCS. Our findings suggest that it may be possible to accurately predict individual responses to tDCS for some behavioural measures using measures of neuroanatomy. In the future, our models might be extended to predict treatment outcome in individuals with clinical diagnoses, and may allow for more individualized, person-centred interventions.

2.
PLoS Comput Biol ; 19(2): e1010811, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36735751

RESUMEN

A topic of growing interest in computational neuroscience is the discovery of fundamental principles underlying global dynamics and the self-organization of the brain. In particular, the notion that the brain operates near criticality has gained considerable support, and recent work has shown that the dynamics of different brain states may be modeled by pairwise maximum entropy Ising models at various distances from a phase transition, i.e., from criticality. Here we aim to characterize two brain states (psychedelics-induced and placebo) as captured by functional magnetic resonance imaging (fMRI), with features derived from the Ising spin model formalism (system temperature, critical point, susceptibility) and from algorithmic complexity. We hypothesized, along the lines of the entropic brain hypothesis, that psychedelics drive brain dynamics into a more disordered state at a higher Ising temperature and increased complexity. We analyze resting state blood-oxygen-level-dependent (BOLD) fMRI data collected in an earlier study from fifteen subjects in a control condition (placebo) and during ingestion of lysergic acid diethylamide (LSD). Working with the automated anatomical labeling (AAL) brain parcellation, we first create "archetype" Ising models representative of the entire dataset (global) and of the data in each condition. Remarkably, we find that such archetypes exhibit a strong correlation with an average structural connectome template obtained from dMRI (r = 0.6). We compare the archetypes from the two conditions and find that the Ising connectivity in the LSD condition is lower than in the placebo one, especially in homotopic links (interhemispheric connectivity), reflecting a significant decrease of homotopic functional connectivity in the LSD condition. The global archetype is then personalized for each individual and condition by adjusting the system temperature. The resulting temperatures are all near but above the critical point of the model in the paramagnetic (disordered) phase. The individualized Ising temperatures are higher in the LSD condition than in the placebo condition (p = 9 × 10-5). Next, we estimate the Lempel-Ziv-Welch (LZW) complexity of the binarized BOLD data and the synthetic data generated with the individualized model using the Metropolis algorithm for each participant and condition. The LZW complexity computed from experimental data reveals a weak statistical relationship with condition (p = 0.04 one-tailed Wilcoxon test) and none with Ising temperature (r(13) = 0.13, p = 0.65), presumably because of the limited length of the BOLD time series. Similarly, we explore complexity using the block decomposition method (BDM), a more advanced method for estimating algorithmic complexity. The BDM complexity of the experimental data displays a significant correlation with Ising temperature (r(13) = 0.56, p = 0.03) and a weak but significant correlation with condition (p = 0.04, one-tailed Wilcoxon test). This study suggests that the effects of LSD increase the complexity of brain dynamics by loosening interhemispheric connectivity-especially homotopic links. In agreement with earlier work using the Ising formalism with BOLD data, we find the brain state in the placebo condition is already above the critical point, with LSD resulting in a shift further away from criticality into a more disordered state.


Asunto(s)
Alucinógenos , Humanos , Alucinógenos/farmacología , Dietilamida del Ácido Lisérgico/farmacología , Temperatura , Encéfalo , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...